Energy landscapes of nucleophilic substitution reactions: A comparison of density functional theory and coupled cluster methods
نویسندگان
چکیده
We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (SN2) reactions involving, amongst others, nucleophilic attack at carbon, nitrogen, silicon, and sulfur. In particular, we investigate the ability of the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA as well as hybrid DFT to reproduce high-level coupled cluster (CCSD(T)) benchmarks that are close to the basis set limit. The most accurate GGA, meta-GGA, and hybrid functionals yield mean absolute deviations of about 2 kcal/mol relative to the coupled cluster data, for reactant complexation, central barriers, overall barriers as well as reaction energies. For the three nonlocal DFT classes, the best functionals are found to be OPBE (GGA), OLAP3 (meta-GGA), and mPBE0KCIS (hybrid DFT). The popular B3LYP functional is not bad but performs significantly worse than the best GGA functionals. Furthermore, we have compared the geometries from several density functionals with the reference CCSD(T) data. The same GGA functionals that perform best for the energies (OPBE, OLYP), also perform best for the geometries with average absolute deviations in bond lengths of 0.06 A and 0.6 degrees, even better than the best meta-GGA and hybrid functionals. In view of the reduced computational effort of GGAs with respect to meta-GGAs and hybrid functionals, let alone coupled cluster, we recommend the use of accurate GGAs such as OPBE or OLYP for the study of SN2 reactions.
منابع مشابه
Benchmark study on the smallest bimolecular nucleophilic substitution reaction: H⁻+CH₄-->CH₄+H⁻.
We report here a benchmark study on the bimolecular nucleophilic substitution (S(N)2) reaction between hydride and methane, for which we have obtained reference energies at the coupled cluster toward full configuration-interaction limit (CC-cf/CBS). Several wavefunction (HF, MP2, coupled cluster) and density functional methods are compared for their reliability regarding these reference data.
متن کاملThe Effect of Substitution of a Zn Atom in Cdn-1TenClusters (n=1-10)
In this research, structural and electronic properties of ZnCdn-1Ten clusters (n=1-10) have been studied by formalism of density functional theory and using the projector augmented wave within local density approximation. The structural properties (such as bond length/angle and coordination number), electronic and optical properties (such as binding energy, Kohn-Sham spect...
متن کاملDFT Study and Comparison between B6C4Si and C16 Clusters as a Vitamin C Carrier
In this study the chemical properties of B6C4Si and C16 Clusters connected vitamin C have been investigated using density functional theory (DFT). NMR parameters and HOMO- LUMO Gap energy are calculated by using density functional method (B3LYP) with 6-311G* basis set. Calculations show that HOMO- LUMO Gap energy of vitamin C decreases after connecting to B6C4Si or C16 cluster decreasing of HOM...
متن کاملInvestigating the Effect of Fullerene (C20) Substitution on the Structural and Energetic Properties of Tetryl by Density Functional Theory
The substitution reaction of pure, silicon doped and germanium doped fullerenes and tetryl were evaluated computationally at two configurations, in this study. For this purpose, all of the studied structures were optimized geometrically and then IR and NBO calculations were performed on them in the temperature range of 300-400 K at 10˚ intervals. The obtained negative values of Gibbs free energ...
متن کاملStudy of thermodynamic parameters of (TATB) and its fullerene derivatives with different number of Carbon (C20, C24, C60), in different conditions of temperature, using density functional theory
In this research 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) were attached with different nano structures of fullerene with 20, 24 and 60 carbons producing nano structures with diverse molecular weights. Then by the use of density functional theory methods, thermodynamic parameters of TATB with foregoing nanostructures, in wide of temperature, between 300-400 ºK were computed. To this purpo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational chemistry
دوره 28 9 شماره
صفحات -
تاریخ انتشار 2007